新闻中心
食品科学新突破!利用机器学习与人工智能做食品科学研究,高分论文“神器”!(食品科学前沿领域有哪些)
CADD(Computer Aided Drug Design):计算机辅助药物设计,依据生物化学、酶学、分子生物学以及遗传学等生命科学的研究成果,针对这些基础研究中所揭示的包括酶、受体、离子通道及核酸等潜在的药物设计靶点,并参考其它类源性配体或天然产物的化学结构特征,以计算机化学为基础,通过计算机的模拟、计算和预算药物与受体生物大分子之间的相互作用,考察药物与靶点的结构互补、性质互补等,设计出合理的药物分子。它是设计和优化先导化合物的方法,CADD的应用,包括基于结构的药物设计(SBDD)、基于配体的药物设计(LBDD)、高通量虚拟筛选(HTVS)等技术,突破了传统的先导物发现模式,极大地促进了先导化合物发现和优化。特别是在食品、生物、化学、医药、植物、疾病方面应用广泛!靶点的发现与确证是现代新药研发的第一步,也是新药创制过程中的瓶颈之一。CADD的应用可以加快靶点发现的速度,提高靶点发现的准确度,从而推进新药研发。
AIDD(AIDrug Discovery & Design):是近年来非常火热的技术应用,且已经介入到新药设计到研发的大部分环节当中,为新药发现与开发带来了极大的助力。随着医药大数据的积累和人工智能技术的发展,运用AI技术并结合大数据的精准药物设计也不断推动着创新药物的发展。在新型冠状病毒的治疗方案中,通过一系列计算机辅助药物生物计算的方法发现一大类药物分子可以有效阻止新冠病毒的侵染,为治疗新冠提供了新思路。倾向于机器对数据库信息的自我学习,可以对数据进行提取和学习,一定程度上避免了化合物设计过程中的试错路径,同时还会带来很多全新的结构,为药物发现打破常规的结构壁垒。
代谢组学是对某一生物或细胞在一特定生理时期内所有代谢产物同时进行定性定量分析的学科,被广泛用于揭示小分子与生理病理效应间的关系。目前,代谢组学已经被应用于药物开发的各个阶段(如药物靶标识别、先导化合物发现、药物代谢分析、药物响应和耐药研究等)。基于代谢组学的高性价比特性,它被药学领域的研究者给予了厚望,有望加速新药开发的进程。然而,代谢组领域还面临着严重的信号处理与数据分析问题,对其在新药研发中的应用构成了巨大挑战。为了有效消除由环境、仪器和生物因素所引入的不良信号波动,就需要开发针对代谢组信号系统优化的新方法,为不同组学研究量身定制最优的数据分析策略。
专题一:CADD计算机辅助药物设计实践应用专题
专题二:AIDD人工智能药物发现实践应用专题
专题三:机器学习在微生物组学时间应用专题
专题四:机器学习在代谢组学实践应用专题
能够快速运用到自己的科研项目和课题上,助力学员发表Nature、Science、Cell等正刊及子刊!(在新技术加持下,用更少的经费,发更高质量的文章)
二、课程内容
具体课程内容都可滑动查看
课程一、CADD计算机辅助药物设计
第一天上午
背景与理论知识以及工具准备
1.PDB数据库的介绍和使用
1.1数据库简介
1.2靶点蛋白的结构查询与选取
1.3靶点蛋白的结构序列下载
1.5批量下载蛋白晶体结构
2.Pymol的介绍与使用
2.1软件基本操作及基本知识介绍
2.2蛋白质-配体相互作用图解
2.3蛋白-配体小分子表面图、静电势表示
2.4蛋白-配体结构叠加与比对
2.5绘制相互作用力
3.notepad的介绍和使用
3.1 优势及主要功能介绍
3.2 界面和基本操作介绍
3.3插件安装使用
下午
一般的蛋白
-配体分子对接讲解
1.对接的相关理论介绍
1.1分子对接的概念及基本原理
1.2分子对接的基本方法
1.3分子对接的常用软件
1.4分子对接的一般流程
2.常规的蛋白-配体对接
2.1收集受体与配体分子
2.2复合体预构象的处理
2.3准备受体、配体分子
2.4蛋白-配体对接
2.5对接结果的分析
以新冠病毒蛋白主蛋白酶靶点及相关抑制剂为例
第二天
虚拟筛选
1.小分子数据库的介绍与下载
2.相关程序的介绍
2.1 openbabel的介绍和使用
2.2 chemdraw的介绍与使用
3.虚拟筛选的前处理
4.虚拟筛选的流程及实战演示
案例:筛选新冠病毒主蛋白酶抑制剂
5.结果分析与作图
6.药物ADME预测
6.1ADME概念介绍
6.2预测相关网站及软件介绍
6.3预测结果的分析
第三天
拓展对接的使用方法
1.蛋白-蛋白对接
1.1蛋白-蛋白对接的应用场景
1.2相关程序的介绍
1.3目标蛋白的收集以及预处理
1.4使用算例进行运算
1.5关键残基的预设
1.6结果的获取与文件类型
1.7结果的分析
以目前火热的靶点
PD-1/PD-L1等为例。
2.涉及金属酶蛋白的对接
2.1 金属酶蛋白-配体的背景介绍
2.2蛋白与配体分子的收集与预处理
2.3金属离子的处理
2.4金属辅酶蛋白-配体的对接
2.5结果分析
以人类法尼基转移酶及其抑制剂为例
3.蛋白-多糖分子对接
4.1蛋白-多糖相互作用
4.2对接处理的要点
4.3蛋白-多糖分子对接的流程
4.4蛋白-多糖分子对接
4.5相关结果分析
α-糖苷转移酶和多糖分子对接为例
5.核酸-小分子对接
5.1核酸-小分子的应用现状
5.2相关的程序介绍
5.3核酸-小分子的结合种类
5.4核酸-小分子对接
5.5相关结果的分析
以人端粒
g -四链和配体分子对接为例。
操作流程介绍及实战演示
第四天
拓展对接的使用方法
1.柔性对接
1.1柔性对接的使用场景介绍
1.2柔性对接的优势
1.3蛋白-配体的柔性对接
重点:柔性残基的设置方法
1.4相关结果的分析
以周期蛋白依赖性激酶
2(CDK2)与配体1CK为例
2.共价对接
2.1两种共价对接方法的介绍
2.1.1柔性侧链法
2.1.2两点吸引子法
2.2蛋白和配体的收集以及预处理
2.3共价药物分子与靶蛋白的共价对接
2.4结果的对比
以目前火热的新冠共价药物为例。
3.蛋白-水合对接
3.1水合作用在蛋白-配体相互作用中的意义及方法介绍
3.2蛋白和配体的收集以及预处理
3.3对接相关参数的准备
重点:水分子的加入和处理
3.4蛋白-水分子-配体对接
3.5结果分析
以乙酰胆碱结合蛋白
(AChBP)与尼古丁复合物为例
第五天
分子动力学模拟(linux与gromacs使用安装)
1. linux系统的介绍和简单使用
1.1 linux常用命令行
1.2 linux上的常用程序安装
1.3 体验:如何在linux上进行虚拟筛选
2.分子动力学的理论介绍
2.1分子动力学模拟的原理
2.2分子动力学模拟的方法及相关程序
2.3相关力场的介绍
3.gromacs使用及介绍
重点:主要命令及参数的介绍
4.origin介绍及使用
第六天
溶剂化分子动力学模拟的执行
1.一般的溶剂化蛋白的处理流程
2.蛋白晶体的准备
3.结构的能量最小化
4.对体系的预平衡
5.无限制的分子动力学模拟
6.分子动力学结果展示与解读
以水中的溶菌酶为例
第七天
蛋白-配体分子动力学模拟的执行
1.蛋白-配体在分子动力学模拟的处理流程
2.蛋白晶体的准备
3.蛋白-配体模拟初始构象的准备
4.配体分子力场拓扑文件的准备
4.1 高斯的简要介绍
4.2 ambertool的简要介绍
4.3生成小分子的力场参数文件
5.对复合物体系温度和压力分别限制的预平衡
6.无限制的分子动力学模拟
7.分子动力学结果展示与解读
8.轨迹后处理及分析
以新冠病毒蛋白主蛋白酶靶点及相关抑制剂为例
部分模型案例图片
课程二、AIDD人工智能药物发现与设计专题 (第一天)
人工智能药物发现(AIDD)简介
机器学习和深度学习在药物发现领域的应用
工具的介绍与安装
1.人工智能药物发现(AIDD)简介2.机器学习和深度学习在药物发现领域的应用
2.1药物靶标相互作用
2.2药物重定位
2.3药物不良反应
2.4药物间相互作用
3.工具介绍与安装
3.1Anaconda3/Pycharm安装
3.2Python基础
3.3Numpy基础
3.4Pandas基础
3.5Matplotlib基础
3.6scikit-learn安装
3.7Pytorch安装
3.8RDKit基础
(第二天)
机器学习
机器学习药物发现案例
1.机器学习
1.1分类算法与应用
1.2回归算法与应用
1.3聚类算法
1.4降维
1.5模型的评估方法和评价指标
1.6特征工程
2.机器学习药物发现案例(一)
——药物副作用预测模型
3.机器学习药物发现案例(二)
——化合物生物活性分类模型
4.机器学习药物发现案例(三)
——化合物生物活性回归模型
(第三天)
深度学习(一)
深度学习药物发现案例(一)
1.深度学习(一)
1.1多层感知机
1.2深度神经网络
1.3反向传播
1.4优化方法
1.5损失函数
1.6卷积神经网络
2.深度学习药物发现案例(一)
——药物-药物相互作用预测模型
(第四天)
深度学习(二)
深度学习药物发现案例(二)
1.深度学习(二)
1.1循环神经网络
1.2消息传递神经网络
1.3图卷积神经网络
1.4图注意力神经网络
1.5图采样和聚合
2.深度学习药物发现案例(二)
——药物靶标相互作用预测模型
3.深度学习药物发现案例(三)
——药物重定位模型
(第五天)
深度学习(三)
深度学习药物发现案例(三)
1.深度学习(三)
1.1注意力机制
1.2自注意力模型
1.3多头自注意力模型
1.4交叉注意力模型
2.深度学习药物发现案例(四)
——药物-药物相互作用预测模型
3.深度学习药物发现案例(五)
——药物靶标结合亲和力预测模型
赠送视频:深度学习AiphaFold2蛋白质结构预测实例讲解
(以下内容为赠送的视频教程)
蛋白质结构与功能的概述。
蛋白质的组成
蛋白质的结构
蛋白质的功能
常见蛋白质结构预测的网站及方法。
常用蛋白质结构预测的相关网站及软件
常用网站及软件的使用方法及说明
机器学习在蛋白质结构预测的应用。
蛋白质结构与小分子药物库获取
机器学习加速预测小分子药物
AlphaFold2机器学习模型对蛋白结构预测
实战蛋白结构预测目前最好的人工智能模型AlphaFold2。
AlphaFold2模型的获取及安装
AlphaFold2相关数据的获取
AlphaFold2模型的实战操作
案例图片:
课程三、机器学习微生物组学
第一天
机器学习及微生物学简介
1.机器学习基本概念介绍
2. 常用机器学习模型介绍(GLM,BF,SVM,lasso,KNN等等)
3. 混淆矩阵
4. ROC曲线
5. 主成分分析(PCA)
6. 微生物学基本概念
7. 微生物学常用分析介绍
R语言简介及实操
1.R语言概述
2.R软件及R包安装
3.R语言语法及数据类型
4.条件语句
5.循环
第二天
机器学习在微生物学中的应用案例分享
1.利用机器学习基于微生物组学数据预测宿主表
2.利用机器学习基于微生物组学数据预测疾病状态
3.利用机器学习预测微生物风险
4.机器学习研究饮食对肠道微生物的影响
微生物学常用分析(实操)
1. 微生物丰度分析
2. α-diversity,β-diversity分析
3. 进化树构建
4. 降维分析
5. 基于OTU的差异表达分析,热图,箱型图绘制微生物biomarker鉴定
第三天:(实操)
零代码工具利用机器学习分析微生物组学数据
1. 加载数据及数据归一化
2. 构建训练模型(GLM, RF, SVM)
3. 模型参数优化
4. 模型错误率曲线绘制
5. 混淆矩阵计算
6. 重要特征筛选
7. 模型验证,ROC曲线绘制利用模型进行预测
第四天(实操)
利用机器学习基于微生物组学数据预测宿主表型(二分类变量以及连续变量)
1. 加载数据(三套数据)
2. 数据归一化
3. OUT特征处理
4. 机器学习模型构建(RF, KNN, SVM, Lasso等9种机器学习方法)
5. 5倍交叉验证
6. 绘制ROC 曲线,比较不同机器学习模型模型性能评估
第五天(实操)
利用机器学习预测微生物风险(多分类)
1. 加载数据
2. 机器学习模型构建(RF, gbm, SVM, LogitBoost等等)
3. 10倍交叉验证
4. 模型性能评估
利用机器学习预测刺激前后肠道菌群变化
1. 数据加载及预处理
2. α-diversity,β-diversity分析
3. RF模型构建(比较分别基于OUT,KO,phylum的模型效果)
4. 10倍交叉验证, 留一法验证
5. 特征筛选及重要特征可视化外部数据测试模型
案例图片:
课程四、机器学习与代谢组学
第一天
A1 代谢物及代谢组学的发展与应用
(1) 代谢生理功能;
(2) 代谢疾病;
(3) 非靶向与靶向代谢组学;
(4) 空间代谢组学与质谱成像(MSI);
(5) 代谢流与机制研究;
(6) 代谢组学与药物和生物标志物。
A2 代谢组学实验流程简介
A3 色谱、质谱硬件原理
(1) 色谱分析原理;
(2) 色谱的气相、液相和固相;
(3) 色谱仪和色谱柱的选择;
(4) 质谱分析原理及动画演示;
(5) 正、负离子电离模式;
(6) 色谱质谱联用技术;
(7) LC-MS 的液相系统
A4 代谢通路及代谢数据库
(1) 几种经典代谢通路简介;
(2) 能量代谢通路;
(3) 三大常见代谢物库:HMDB、METLIN 和 KEGG;
(4) 代谢组学原始数据库:Metabolomics Workbench 和Metabolights.
第二天
B1 代谢物样本处理与抽提
(1) 组织、血液和体液样本的提取流程与注意事项;
(2) 用 ACN 抽提代谢物的流程与注意事项;
(3) 样本及代谢物的运输与保存问题;
B2 LC-MS 数据质控与搜库
(1) LC-MS 实验过程中 QC 样本的设置方法;
(2) LC-MS 上机过程的数据质控监测和分析;
(3) XCMS 软件数据转换与提峰;
B3 R 软件基础
(1) R 和 Rstudio 的安装;
(2) Rstudio 的界面配置;
(3) R 的基本数据结构和语法;
(4) 下载与加载包;
(5) 函数调用和 debug;
B4 ggplot2
(1) 安装并使用 ggplot2
(2) ggplot2 的画图哲学;
(3) ggplot2 的配色系统;
(4) ggplot2 画组合图和火山图;
第三天
机器学习
C1 无监督式机器学习在代谢组学数据处理中的应用
(1) 大数据处理中的降维;
(2) PCA 分析作图;
(3) 三种常见的聚类分析:K-means、层次分析与 SOM
(4) 热图和 hcluster 图的 R 语言实现;
C2 一组代谢组学数据的降维与聚类分析的 R 演练
(1) 数据解析;
(2) 演练与操作;
C3 有监督式机器学习在代谢组学数据处理中的应用
(1) 数据用 PCA 降维处理后仍然无法找到差异怎么办?
(2) PLS-DA 找出最可能影响差异的代谢物;
(3) VIP score 和 coef 的意义及选择;
(4) 分类算法:支持向量机,随机森林
C4 一组代谢组学数据的分类算法实现的 R 演练
(1) 数据解读;
(2) 演练与操作;
第四天
D1 代谢组学数据清洗与 R 语言进阶
(1) 代谢组学中的 t、fold-change 和响应值;
(2) 数据清洗流程;
(3) R 语言 tidyverse
(4) R 语言正则表达式;
(5) 代谢组学数据过滤;
(6) 代谢组学数据 Scaling 原理与 R 实现;
(7) 代谢组学数据的 Normalization;
(8) 代谢组学数据清洗演练;
D2 在线代谢组分析网页 Metaboanalyst 操作
(1) 用 R 将数据清洗成网页需要的格式;
(2) 独立组、配对组和多组的数据格式问题;
(3) Metaboanalyst 的 pipeline 和注意事项;
(4) Metaboanalyst 的结果查看和导出;
(5) Metaboanalyst 的数据编辑;
(6) 全流程演练与操作
第五天
E1 机器学习与代谢组学顶刊解读(2-3 篇)
(1) Nature Communication 一篇代谢组学小鼠脑组织样本 database 类型的文献;
(2) Cell 一篇代谢组学患者血液样本的机器学习与疾病判断的文献;
(3) 1-2 篇代谢组学与转录组学和蛋白组学结合的文献。
E2 文献数据分析部分复现(1 篇)
(1) 文献深度解读;
(2)实操:从原始数据下载到图片复现;
(3) 学员实操。
案例图片:
三、主讲老师
CADD主讲老师来自国内高校、中科院等单位,老师主要擅长深度学习、机器学习、药物虚拟筛选、计算机辅助药物设计、人工智能药物发现、分子对接、分子动力学等方面的研究,在我们单位长期进行授课,讲课内容和授课方式以及敬业精神受到参会学员 的一致认可和高度评价
AIDD授课老师余老师,有十余年的计算机算法研究和程序设计经验。研究方向涉及生物信息学,深度学习,药物靶标识别,药物不良反应等。参与了国自然基金2项,主持了省厅级科研项目3项。一作身份发表SCI论文数篇,包括BMC Bioinformatics, Journal of Biomedical Informatics, International Journal of Molecular Sciences等知名期刊。
机器学习微生物培训班主讲老师来自国内高校李老师授课,有十余年的微生物组数据分析经验。研究领域涉及机器学习,芯片数据分析,微生物组数据分析,DNA,RNA,甲基化测序数据分析,单细胞测序数据分析,miRNA及靶基因分析等,发表SCI论文30余篇,其中一作及并列一作15篇。
机器学习代谢组学 985高校神经科学博士,主要利用代谢组学、转录组学和分子生物学等技术研究神经内科慢性病的发病机制和生物标志物。擅长高效液相色谱-质谱联用(LC-MS)技术进行非靶向和靶向代谢组学从样本制备到数据分析的全流程研究,以及多组学大数据的生物信息学整合分析。5年内在J Clin Invest, EBioMedicine, Cell Death Dis, Cell Death Discov, Nanotoxicology等杂志发表SCI论文10篇。
四、培训对象
全国各大高校、企业、科研院所从事人工智能、生命科学、代谢工程、有机合成、天然产物、药物、生物信息学、植物学,动物学、化学化工,医学、基因组学、农业科学、植物学、动物学,临床医学、食品科学与工程、肿瘤免疫与靶向治疗、 全基因组泛癌分析、人黏连蛋白折叠基因组机、病毒检测、功能基因组、遗传图谱、基因挖掘变异、代谢组学、蛋白质组学、转录组学、生物医学、癌症、核酸、毒物学等研究科研人员及爱好者
五、培训特色及福利
1、课程特色--全面的课程技术应用、原理流程、实例联系全贯穿
2、学习模式--理论知识与上机操作相结合,让零基础学员快速熟练掌握
3、课程服务答疑--主讲老师将为您实际工作中遇到的问题提供专业解答
福利:报名缴费成功赠送报名班型全套预习视频,课后学习完毕提供全程录像视频回放,针对与培训课程内容进行长期答疑,微信解疑群永不解散,参加本次课程的学员可免费再参加一次本单位后期组织的相同的专题培训班(任意一期都可以)
授课方式:通过腾讯会议线上直播,理论+实操的授课模式,老师手把手带着操作,从零基础开始讲解,电子PPT和教程开课前一周提前发送给学员,所有培训使用软件都会发送给学员,有什么疑问采取开麦共享屏幕和微信群解疑,学员和老师交流、学员与学员交流,培训完毕后老师长期解疑,培训群不解散,往期培训学员对于培训质量和授课方式一致评价极高!
腾讯会议问题实时解答及学员反馈
学员对培训非常认可,我们也保证二次学习是免费的
六、授课时间及地点
CADD计算机辅助药物设计专题培训班
2023.4.22 -----2023.4.23 全天授课(上午09.00-11.30 下午13.30-17.00)
2023.4.25-----2023.4.28晚上授课(晚上19.00-22.00)
2023.5.6-----2023.5.7全天授课(上午09.00-11.30 下午13.30-17.00)
2023.5.8 -----2023.5.9晚上授课 (晚上19.00-22.00)
AIDD人工智能药物发现与设计专题培训班
2023.5.6-----2023.5.7 全天授课(上午 09.00-11.30 下午 13.30-17.00)
2023.5.9----2023.5.10 晚上授课(晚上 1 9.00-22.00)
2023.5.13----2023.5.14 全天授课(上午 09.00-11.30 下午 13.30-17.00)
机器学习微生物组学培训班
2023.4.22 ----- 全天授课(上午09.00-11.30 下午13.30-17.00)
2023.4.24 -----4.27晚上授课 (晚上19.00-22.00)
2023.4.29-----2023.4.30 全天授课(上午09.00-11.30 下午13.30-17.00)
机器学习代谢组学培训班
2023.4.22 -----2023.4.23 全天授课(上午09.00-11.30 下午13.30-17.00)
2023.5.6-----2023.5.7全天授课(上午09.00-11.30 下午13.30-17.00)
2023.5.10 -----2023.5.11晚上授课 (晚上19.00-22.00)
七、报名费用
CADD计算机辅助药物设计;AIDD人工智能药物发现
公费价:每人每班¥5880元 (含报名费、培训费、资料费)
自费价:每人每班¥5480元 (含报名费、培训费、资料费)
机器学习微生物组学;机器学习代谢组学
公费价:每人每班¥4680元 (含报名费、培训费、资料费)
自费价:每人每班¥4280元 (含报名费、培训费、资料费)
优惠
优惠1:两班同报:9880元 三班同报:13880元 四班同报:17880元 五班同报:20000元
优惠2:提前报名缴费学员+转发到朋友圈或者到学术交流群可享受每人300元优惠(仅限15名)
优惠3:同时报名两个班免费赠送一个学习名额(赠送班任选)
优惠4: 报名五个培训班以上,免费赠送三个培训名额(赠送班任选)
证书:参加培训并通过考试的学员,可以申请获得工业和信息化部工业文化发展中心颁发的“工业强国建设素质素养提升尚工行动”岗位能力适应评测证书。该证书可在中心官网查询,可作为能力评价,考核和任职的重要依据。评测证书查询网址:www.miit-icdc.org(自愿申请,须另行缴纳考试费500元/人)
八、报名咨询联系方式
报名电话:15565496888 (微信同号)
引用本次参会学员的一句话:
发现真的是脚踏实地的同时 需要偶尔仰望星空非常感谢各位对我们培训的认可!祝愿各位心想事成!
为构建多元化食物供给体系并兼顾生态环境保护,并形成以生物多样性保护促进食品生产的可持续性,北京食品科学研究院和中国食品杂志社将与北方民族大学、皖西学院、宿州学院、滁州学院于 2023年5月13-14日在中国宁夏银川 共同举办“ 生态保护与食品可持续发展国际研讨会 ”。本届研讨会将围绕新资源食品挖掘、动植物、微生物可替代蛋白、食用菌等食物资源的开发现状、重要创新进展及存在的问题开展研讨,探讨未来食品发展方向,通过展示我国生态保护与食品可持续发展等领域的最新科研成果,搭建科研单位与企业产学研结合的平台,共同促进我国食品产业发展快速踏入新里程。
Food Science of Animal Products(ISSN: 2958-4124, e-ISSN : 2958-3780)是一本国际同行评议、开放获取的期刊,由北京食品科学研究院、中国肉类食品综合研究中心主办,中国食品杂志社《食品科学》编辑团队运营,属于食品科学与技术学科,旨在报道动物源食品领域最新研究成果,涉及肉、水产、乳、蛋、动物内脏、食用昆虫等原料,研究内容包括食物原料品质、加工特性,营养成分、活性物质与人类健康的关系,产品风味及感官特性,加工或烹饪中有害物质的控制,产品保鲜、贮藏与包装,微生物及发酵,非法药物残留及食品安全检测,真实性鉴别,细胞培育肉,法规标准等。
投稿网址:
https://www.sciopen.com/journal/2958-4124